
Fractional Fokker-Planck Equation
with General Confinement Force

Laurent Lafleche
CEREMADE-Université Paris-Dauphine / CMLS-École Polytechnique

Fractional Fokker-Planck Equation

We consider the homogeneous fractional Fokker-Planck Equation
∂tf = Λf := ∆

α
2f + div (Ef ) , (FFP)

with initial condition f in ∈ L1 and where ∆α
2 with α ∈ (0, 2) is the fractional

Laplacian defined for example by

∆
α
2u = F(−|2πξ|αû) ' vp

∫
Rd

u(y)− u(x)
|y − x|d+α dy.

E is a given confining force field taking typically the form
E ' 〈x〉βx ' ∇

(
〈x〉2+β) ,

where 〈x〉 =
√

1 + |x|2. We will say that E is weakly confining when β ∈
(−α, 0) and that E is strongly confining when β ≥ 0. The particular case
E = x was studied in [1], [2], [3]) and the classical case α = 2 in [4],[5].
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Properties of the solutions

The behavior of solutions is studied in weighted Lebesgue spaces defined by
‖u‖Lp(m) := ‖um‖Lp with m(x) = 〈x〉k.

where k < α∧ 1. These spaces provide a good framework to understand both the
gain of regularity and the gain of space decay. But we still don’t know whether
or not the solutions become bounded when the force field is strongly confining.
However, a special feature of the fractional Laplacian is its nonlocal behavior,
which gives a gain of uniform positivity. We end up with the following results:

Proposition 1

Gain of regularity:
f in ∈ L1(m) =⇒ f p/2 ∈ L1(R+, H

α/2)
Gain of integrability:

etΛ : L1(m)→ L∞(m) if E is weakly confining.
etΛ : L1→ Lp

−
k,β(m) if E is strongly confining.

Gain of positivity: for any N > d + α + β and R > 0, there exists
ψ : R∗+→ R∗+ such that

etΛf ≥ ψ(t)
〈x〉N

∫
BR

f

Ideas of proof: The gain of regularity and integrability are a consequence of Nash
type inequalities coupled with the following estimate for p < pk,β

∂t
(∫

Rd
f pmp

)
≤ −C

∣∣∣∣(fm)
p
2

∣∣∣∣
Hα/2

+
∫
Rd
|f |pmp

 c

〈x〉α
+ b− a〈x〉β

 . (1)

To prove the gain of positivity, we isolate the nonlocal part of the fractional Lapla-
cian by taking χ = 1Br

and κc = (1− χ)|x|−(d+α) and by writing

∆
α
2u = κc ∗ u− ‖κc‖L1u +

∫
|x−y|<r

(u(y)− u(x))
|x− y|d+α dy.

The operator Λ is then decomposed into Λ = A+κc ∗ · and by Duhamel’s formula
f (t) = etAf in +

∫ t
0
esA(κc ∗ f )(t− s) ds.

The convolution with κc transforms the local conservation of mass into a quanti-
tative lower bound, which is preserved by esA thanks to the maximum principle
and a positive subsolution.

Polynomial convergence for weak confinement

The positivity and Lp estimates combined with Krein-Rutman theorem give the
existence of a steady state F . As in the classical case, the diffusion let appear a
dissipation of Lp norm (or dissipation of generalized entropy), which can be
expressed thanks to the following generalization of |∇|u|p/2|2

Dp(u) ' ∆
α
2(|u|p)− pup−1∆

α
2(u).

Writing h = f/F for the solution f to the (FFP) equation, it holds
∂t
(∫

Rd
|h|pF

)
≤ −

∫
Rd
Dp(h)F.

Since F is bounded, we can prove a local fractional Poincaré inequality∫
Ω
hp−1

(
h−

∫
Ω
hF

)
F ≤ C

∫
Ω
Dp(h)F.

We then combine this estimate with (1) to prove the convergence to equilibrium.

Theorem 1

Assume β ∈ (−α, 0). Then there exists p∗ > 1 such that for any p < p∗ and
k̄ ≤ k, there exists a > 0 such that

‖f (t)− F‖Lp(m̄) ≤ C〈t〉−a‖f in − F‖Lp(m)

Exponential convergence for strong confinement

In the case of strong confinement, it is not known whether or not the solution
becomes immediately bounded. However, the rate of convergence to equilibrium
is proved following [6] by using the gain of positivity. We change point of view
and define the dual (Markov) semigroup Pt := etΛ

∗ ∈ L(L∞(m−1)). The L1(m)
estimate is then known as the Foster-Lyapunov criteria and is expressed as
the existence of γt ≤ 1 such that,

Ptm ≤ γtm + c.

The gain of positivity can be rewritten
Pt ≥ 〈νt, ·〉1BR

.

It implies exponential convergence to equilibrium in the spirit of Harris’ theorem.

Theorem 2

If β ≥ 0 and k ∈ (0, α ∧ 1), then there exists p∗ > 1 and a > 0 such that for
any p ∈ [1, p∗)

‖f (t)− F‖Lp(m) ≤ Ce−at‖f in − F‖Lp(m)
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